
Details of Technical Progress 5P41-RR00785-14

2 - Highlights of Progress

In the last year, research has progressed on several fundamental issues of AI. As in the
past, our research methodology is experimental; we believe it is most fruitful at this
stage of AI research to raise questions, examine issues, and test hypotheses in the
context of specific problems, such as management of patients with Hodgkin’s disease.
Thus, within the KSL we build systems that implement our ideas for answering (or
shedding some light on) fundamental questions: we experiment with those systems to
determine the strengths and limits of the ideas; we redesign and test more: we attempt
to generalize the ideas from the domain of implementation to other domains; and we
publish details of the experiments. Many of these specific problem domains are
medical or biological. In this way we believe the KSL has made substantial
contributions to core research problems of interest not just to the AIM community but
to AI in general.

Progress is reported below under each of the major topics of our work. Citations are to
KSL technical reports listed in the publications section.

2.1 - Knowledge Representation

How can the knowledge necessary for complex problem solving be represented for its
most effective use in automatic inference processes? Often, the knowledge obtained
from experts is heuristic knowledge, gained from many years of experience. How can
this knowledge, with its inherent vagueness and uncertainty, be represented and applied?

Work continues on BBl, with its explicit representation of control knowledge, as
reported last year (see the summary of Blackboard Architectures below). In addition,
part of our research on NEOMYGIN is focused on using a flexible, rich representation
of control knowledge so that we can model problem solving at the strategic level as well
as at the tactical level.

[See KSL technical reports KSL-87-01 and KSL-87-321

2.2 - Blackboard Architectures and Control

How can we design flexible control structures for powerful problem solving programs?

We have continued to develop the BBl blackboard architecture for systems that reason
about -- control, explain, and learn about -- their own actions. In the area of control,
we have developed two new domain-independent control capabilities. One generic
control knowledge source refines specified parameters of abstract control plans by
generating legal values from a semantic network. The other control knowledge source
performs opportunistic goal-directed reasoning whenever actions recommended by other
control decisions are not executable. In the area of explanation, we have developed the
ExAct program. It provides a flexible, menu-driven set of explanation alternatives. as
well as a graphical display of the comparative advantages of alternative actions. In the
area of learning, we have developed two new capabilities. The WATCH program
observes domain experts solving problems and attempts to abstract from their actions
the underlying control strategy. It automatically programs new control knowledge
sources to generate the hypothesized strategy on subsequent problems. The
TRANALOGY program notices when problems in a new domain are analogous to
problems in a known domain. It hypothesizes that analogous reasoning methods will
work in the new domain as well and automatically programs appropriate knowledge
sources.

We have begun conducting various experiments on the costs and .benefits of control
reasoning. In the context of the PROTEAN system for protein structure modeling, we

E. H. Shortliffe 26

5P41-RR00785-14 Details of Technical Progress

are investigating the power of different kinds of control knowledge and strategies to
produce computational efficiency. Early results suggest that a small computational
investment in control reasoning can produce substantial computational savings in
problem-solving operations. We also are exploring differences among alternative
architectural realizations of a particular control strategy.

We have continued to develop the ACCORD framework for the class of arrangement
problems exemplified by PROTEAN: arrange a set of objects to satisfy constraints.
ACCORD substantially enhances BBl’s general capabilities for control, explanation, and
learning. In addition to PROTEAN, we have applied BBl-ACCORD in the
SIGHTPLAN system for designing construction site layouts.

In order to accommodate ACCORD and other task-specific frameworks, we have
developed a set of generic framework interpretation procedures for: parsing framework
sentences, matching and rating sentences, generating legal parameter values for sentences,
and translating sentences into the lower-level language of BBl. These procedures apply
to any user-specified framework that satisfies the standards of knowledge and
representation laid down in ACCORD. We refer to this growing collection of systems
and knowledge modules as the BB* environment.

[See KSL technical reports KSL-86-38, KSL-87-8, and KSL-87-10 and “other outside
publications” in Section III.A.3.51

2.3 - Advanced Architectures

The goals and technical approach of this project, largely supported by DARPA under
the Strategic Computing Program, have been discussed in previous annual reports. To
summarize briefly, we seek to achieve two to three orders of magnitude speedup in the
execution of knowledge-based systems, by identifying and exploiting sources of
concurrency at all levels of system design: the application level, the problem solving
framework level, the programming language level and the hardware systems architecture
level. Due to the inherent complexity of the task and the lack of theoretical
foundations for parallel computation with ill-structured problems, we have taken an
empirical approach. During the first phase of the project, which will be concluded in
July, 1987, we have made specific choices at each of the system levels, i.e. taken a
“vertical slice” through the design space, and have conducted several experiments to
investigate the effects of a wide variety of parameters on performance.

Some highlights of our accomplishments thus far (most of which occurred during the
past year) include:

. Based on a careful and systematic study of potential hardware system
architectures, we have established an architectural framework for the
underlying machine as a multicomputer array. The study ranged over the
full spectrum of possibilities, from shared memory multiprocessors to shared
memory multicomputer networks to distributed memory multicomputer
networks, taking into account the VLSI opportunities of the 1990’s.

. We have designed and constructed a complex, fully instrumented simulator
to realize the above architectural framework. The simulated class of
machines, called CARE, permits full manipulation of the parameters which
specify the hardware system, e.g. communication topology, memory size, etc.
CARE is written in Zetalisp, and runs on standard Lisp workstations (TI
Explorer, Symbolics 36~~).

. We have studied and implemented basic additions to the Lisp language to
accomplish distributed Lisp processing on CARE class machines. These
additions are now incorporated into the basic simulation language.

27 E. H. Shortliffe

Details of Technical Progress 5P41-RR00785-14

. We created an initial, experimental operating system for CARE class
machines, called CAOS. CAOS was used to produce our first experimental
results, an end-to-end experiment using the ELINT application, using
replicated knowledge sources and pipelining for achieving parallel activity.

. The results of these early experiments were encouraging. Linear speedup,
close to the 45 degree line, was achieved up to the intrinsic limits of the
application.

. We generalized the traditional blackboard problem solving concept, and
developed two new blackboard frameworks. These two frameworks, CAGE
and POLIGON, take opposite points of view with respect to the locus of
computing activity. CAGE uses knowledge sources as the active agents,
whereas POLIGON takes a view that is oriented more towards dataflow, in
which the blackboard nodes are the active agents.

. We evaluated a variety of real-world applications as drivers of the
underlying system levels, discarding several candidates which initially looked
promising but turned out not to be, for various reasons. Consequently, we
decided to build our own application, AIRTRAC. As we programmed this
application in different problem solving frameworks we began to learn
techniques for parallel programming. We initiated experiments to study the
performance of AIRTRAC in both blackboard frameworks.

. Detailed studies of the performance achieved in the ELINT/CAOS
experiments led to drastic simplification of the pipelining scheme, an
orientation toward implementing blackboard nodes as active agents, and
using parallel object oriented programming as a low level implementation
technique. An environment, called LAMINA, grew out of this analysis.
Experiments are in progress to compare the performance of AIRTRAC
implemented in LAMINA with AIRTRAC implemented in the blackboard
frameworks. The first set of AIRTRACYLAMINA experiments, using part
of the knowledge base that can be used in a data-driven manner, exhibited
linear speedup close to the limit of the concurrency inherent in the task.

By the end of 1987 we will have completed five sets of vertical slice experiments. It is
already clear that these experiments could have significant impacts on both the
hardware and software communities. Specifically:

. One important impact of our research will be to shift the emphasis in
parallel architectures for knowledge-based systems from (probably
premature) building of hardware to the development of software systems,
techniques and tools for the encoding of knowledge-based applications.
Hardware can certainly be built. The real difficulty is in developing a firm,
quantitative understanding of what hardware actually matters and what
hardware may actually hurt (e.g., building hardware based upon incompletely
thought-out policy decisions in the software design).

. We will have demonstrated that the distributed memory paradigm is not
only a viable alternative to shared memory architectures, but perhaps
superior in important ways. The vertical slice experiments provide evidence
that implementing a relatively complex application, using a non-shared
address space with message passing, can be accomplished without the
complexities of managing shared address spaces. Moreover, we will have
demonstrated that distributed-memory multicomputers can be programmed to
achieve significant (ten to one hundred times) speed-up for nontrivial
symbolic problem solving applications. Furthermore, such multicomputer

E. H. Shortliffe 28

5P41-RR00785-14 Details of Technical Progress

systems will provide a better fit to the (forecasted) technology for ULSI of
the 1990’s than the shared memory architectures.

. We will have demonstrated that the major “source of power” in parallel
computing is the ability to allow the user to express and manipulate parallel
constructs at the level of the application. Thus, the best return on
investment is to develop appropriate tools to support parallelism at this
level, rather than to support the development of the underlying languages or
compilers. The speedup obtainable by only parallelizing programming
language constructs in a “programmer transparent” manner (e.g., parallel
Prolog or parallel production systems) is very limited.

. An important lesson learned from the success of our simulator is that real
applications can be carefully analyzed in an instrumented environment,
thereby permitting experimentation with alternate architectures. The
community would do well to stress simulation over hardware building:

. We will have demonstrated the need for fast process creation and process
switching mechanisms.

[See KSL technical memos KSL-86-36, KSL-86-69, KSL-87-02, KSL-87-07,
KSL-87-34, KSL-87-35.1

2.4 - Knowledge Acquisition and Machine Learning

Our research in machine learning has focused on several distinct problem domains
including medical (NEOMYCIN/HERACLES) and biochemical (PROTEAN) in
addition to domain-independent investigations. We also are motivated by the need for
effective tools for knowledge acquisition and maintenance of knowledge bases
(IMPULSE and STROBE for FRM, BBEDIT, KSEDIT with BBl).

Several papers by researchers in the KSL were presented at AAAI-86 in Philadelphia in
August. Wilkins and Buchanan describe a method of debugging rule sets (see below).
Rosenbloom and Laird [14] present a mapping between the SOAR architecture and
explanation-based generalization (EBG), in which a justifiable concept definition is
acquired from a single training example and an underlying theory of how the example
is an instance of the concept. SOAR is an architecture that supports general learning
through chunking, which is similar to but not the same as EBG. In addition, the
authors suggest answers to some of the outstanding issues in explanation-based
generalization.

Chunking is a learning mechanism that acquires rules from goal-based experience.
SOAR is a general problem-solving architecture with a rule-based memory that can use
the learning capabilities of chunking for the acquisition and use of macro-operators.
Rosenbloom et al. are investigating chunking in SOAR and find that chunking obtains
extra scope and generality from its intimate connection with the sophisticated problem
solver (SOAR) and the memory organization of the production system.

In their AAAI-86 paper, Horvitz, Heckerman, and Langlotz present a framework for
comparing alternate formalisms for plausible reasoning [6]. They demonstrate a logical
relationship between several intuitive properties for measures of belief and the axioms
of probability and discuss its relevance to research on reasoning under uncertainty in
artificial intelligence.

29 E. H. Shortliffe

Details of Technical Progress 5P41-RR00785-14

Inductive Rule Learning

Buchanan, et al. present an empirical study of the incremental learning process using a
careful selection of counter examples in concept formation with the rule-learning
system RL (described in last year’s SUMEX report). They find that “near misses”,
negative examples that are similar to acceptable cases, are particularly effective in
shrinking the space of possible theories that explain the examples observed. They
define a metric for the distance of each example from the target theory and measure
the effectiveness and efficiency of examples related to the distance measured,
demonstrating that the power of near misses to restrict the space of possible theories
results from their small distance from the target. They also find that intelligent
selection of instances based upon knowledge of the state of the evolving theory results
in a faster convergence of an evolving theory toward the target concept, requiring many
fewer cases for learning.

Debugging Knowledge Structures

In large rule-based systems, the performance of the system is strongly dependent on the
degree to which the knowledge of the system is “debugged” and refined, i.e., erroneous
rules are identified and removed, redundant rules are combined, missing rules are added,
and certainty factors of rules are found that give good results over many cases. Such
evaluation and restructuring of knowledge is an important type of learning and can be
automated to some extent. Here we describe recent work in the debugging and
refinement of knowledge bases using several techniques.

Wilkins and Buchanan [19] analyze a problem with the rule sets of rule-based systems
that use certainty factors, i.e., better individual rules do not necessarily lead to a better
overall set of rules. Since all less-than-certain rules contribute evidence towards
erroneous conclusions for some problem instances, the distribution of these erroneous
conclusions is not necessarily related to the quality of individual rules. This has
important consequences for automatic machine learning of rules, since rule selection is
usually based on measures of quality of individual rules. The authors present a method
using a new Antidote Algorithm that performs a model-directed search of the rule
space to find an improved rule set. They report that the application of this method
significantly reduces the number of misdiagnoses when applied to a rule set generated
from 104 training instances. This work was also presented at the AAAI-86 Conference
in August.

Debugging the knowledge structures of a problem solving agent is the synthetic agent
method [20] determines a performance upper bound for debugging a knowledge base.
The synthetic agent systematically explores the space of near miss training instances and
expresses the limits of debugging in terms of the knowledge representation and control
language constructs of the expert system. This paper presents the framework for
evaluating a differential modeling system.

Wilkins describes the ODYSSEUS apprenticeship learning program [21], designed to
refine and debug knowledge bases for the HERACLES expert system shell. ODYSSEUS
analyzes the behavior of a human specialist using two underlying domain theories, a
strategy theory for the problem solving method (heuristic classification), and an
inductive theory based on past problem solving sessions. ODYSSEUS improves the
knowledge base for the expert system shell, identifying bugs in the system’s knowledge
in the process of following the line-of-reasoning of an expert, serving as a knowledge
acquisition subsystem. ODYSSEUS can also be used as part of an intelligent tutor,
identifying problems in a novice’s understanding and serving as student modeler for
tutoring systems.

E. H. Shortliffe 30

5P41-RR0078514 Details of Technical Progress

Wilkins, et al. illustrate that an explicit representation of the problem solving method
and underlying theories of the problem domain provide a powerful basis for automating
learning for expert system shells [22]. By using domain-independent task procedures
and task procedure metarules, domain knowledge can be located and applied to achieve
problem solving subgoals. However, these rules are often limited in use due to
insufficient domain knowledge. This paper describes the use of metarule critics in
ODYSSEUS for automating the acquisition of domain knowledge, illustrating a powerful
form of failure-driven learning at the level of subgoals as well as at the level of
solving the entire problem.

31 E. H. Shnrtliffe

Details of Technical Progress 5P41-RR00785-14

III.A.3.4. Core System Development

1 - Introduction
In this section we describe progress on our core system development and work toward a
distributed AIM community. Before launching into the technical details, the
motivations and plans for core system work are first summarized along four
dimensions: 1) the motivation for the shift of the SUMEX-AIM community from a
central mainframe-based model of computing resources to a largely distributed
workstation-based model; 2) the prospects for workstation technology and vendor
support for a diverse distributed AIM community; 3) the core SUMEX-AIM systems
tasks needed to complement vendor developments to realize distributed community
operation; and 4) the integration, dissemination, and management of the shift of the
AIM community from a centralized to a more distributed operation, including the
remaining central resource functions:

. Motivation for a Distributed Resource: The motivations for supporting and
managing the AIM community as a distributed community are manifest.
First the cost/performance trade-offs between centralized shared computing
facilities and personal workstations have shifted dramatically toward
workstations, especially in the area of interactive symbolic computation
resources. While the technology is still quite young, the very best
environments for developing knowledge-based systems for biomedicine are
arguably already on personal workstations. Various kinds of workstations
are rapidly decreasing in cost and increasing in performance so that
appropriate models can be selected for cost-effective research support or
system dissemination into practical settings like health care clinics or
application laboratories.

Second, the AIM community, with its growing ties into other diverse areas
of biomedical informatics, has long been too large to effectively support
from a single central node like SUMEX. A number of AIM groups have
already moved to local mainframe computing resources (such as at Rutgers
University, the University of Pittsburgh, the University of California at
Santa Cruz, the University of Minnesota, and Ohio State University). Only
some of these have been able to establish network connections for their
machines to date, without which low-speed terminal connections must still
be made to the central SUMEX resource for mail exchange, software sharing,
information access. As workstation prices fall, this trend toward
decentralization will accelerate and the need for uniform network access,
information services, and systems/software support will increase. The
challenge will be to provide responsive central resource services that
encourage and facilitate effective communication, collaboration, and
information sharing in the new distributed environment.

. Prospects for Workstation Technology: Computer workstations have already
demonstrated remarkably high performance and low cost for symbolic
computing applications. The prospects for future generations of
workstations promise an even fuller spectrum of price/performance
alternatives. Even with the trend toward more effective personal
workstations, however, there are still aspects of an overall computing
environment most effectively implemented and supported through central
resources. These include services like large-volume information and file
storage, special parallel computing architectures, multi-vendor systems
expertise, and experimentation with integrating new computing technologies
for community deployment. But hardware is only a small part of the

E. H. Shortliffe 32

5P41-RR00785-14 Details of Technical Progress

picture -- software represents the larger challenge in the effective
integration of workstations with shared resources -- and here is where a
community systems integration effort is required. Most vendors are
motivated to maximize the sales of their own products, whereas a
community of the size and scope of the AIM community must be prepared
to integrate technologies from diverse vendors in order to maximize its
productivity and to keep abreast of rapidly developing new capabilities. The
role of SUMEX-AIM in this new era is to integrate what is available from
diverse vendors with core system development efforts to facilitate
community research and communications and the smooth evolution of the
AIM distributed computing environment.

. Core Systems Development Tasks: In order for workstations to support AIM
community activities with minimum dependence on expensive, central
mainframes, they must be able to supply not only outstanding knowledge-
based system. development environments but also general computing
environments for tasks like electronic communications, text processing,
information and file management, and utilities like spreadsheet systems.
Many workstation environments do not have fully developed facilities in all
these areas and must be augmented. Another major area of core system
effort will be in the development of tools to facilitate effective workstation
to workstation interactions. These tools include being able to access remote
workstation and central computing resources, linking the graphics displays of
remote workstations with each other over communication networks,
establishing and managing cooperative computing tasks, and enabling remote
transfer and sharing of files and information. Finally we must stay abreast
of the rapidly changing workstation technology and have allocated a small
amount of funding each year to purchase appropriate examples of systems
important to AIM community research for testing, evaluation, and
development.

. Managing the Community Transition: As system research and development
progresses, much will remain to be done to integrate and disseminate these
new workstation tools throughout the national AIM community -- so that
the central DEC 2060 resource can be phased out while maintaining support
of community activities. System tools must be tested, evaluated, and refined
in the broad context of the AIM community: community groups must fund,
acquire, install, and learn to use suitable workstation and network
communications equipment; residual central services must be developed and
made accessible to support sharing software tools, user consulting, and
information resources; and AIM workshop and other management tools for
coordinating, integrating, and extending community activities must be
evolved. We will use a small group of Stanford and AIM community AI
researchers and students to guide the development and testing of distributed
subsystems throughout the research period. Initially, these will come mainly
from the Stanford community which is easily accessible and has a long
experience in experimenting with the development and use of workstation
technologies for AI research. After the early years of development and
experimental dissemination, we will begin to introduce these tools more
extensively for general AIM community use. Our estimate is that these tasks
will require the full five-year research period in order to carry out the
necessary development, make an orderly and smooth transition, and evaluate
the results, without disrupting communications or inter-group collaborations.

33 E. H. Shortliffe

Details of Technical Progress 5P41-RR00785-14

2 - Remote Workstation Access, Virtual Graphics, and Windows

2.1 - Remote Access

Lisp workstations of various types have proven extremely powerful, both as
development environments for artificial intelligence research and as vehicles for
disseminating AI systems into user communities. In addition to the compact,
inexpensive computing resources workstations provide, high-quality graphics play a key
role in their power. Such graphics systems have become indispensable for
understanding the complex data structures involved in developing and debugging large
AI systems and are important in facilitating user access to working programs (e.g., for
ONCOCIN and PROTEAN). However, as we move towards a distributed workstation
computing environment for AI research in the SUMEX-AIM community (and move
away from the centralized, shared DEC 2060), a number of technical obstacles must be
overcome. One of the most important is to eliminate the need for the user display to
be situated close to the workstation computing engine.

This is important in order to allow users to work on workstations over networks from
any location -- at work, at home, or across the country. The first step has been getting
reliable terminal access operational on all workstations. All workstations now have
TCP/IP based terminal servers, and TCP/IP is being installed in the SUMEX network
terminal concentrators. This allows primitive (non-graphical) access to the
workstation’s abilities. A more comprehensive access will be provided through our
remote graphics work.

2.2 - Virtual Graphics

In the past, members of the SUMEX-AIM community have often watched each others
programs work by linking their CRT terminals to the text output-of a running program
on the SUMEX 2060. In the case of workstations, though, it is much more difficult to
link across several networks to view the complex graphics output of a program. Even
locally, it is important to make graphical interaction with workstations across campus or
from home possible. One would like to be able to provide the same powerful graphical
tools and programming environment that are available to a user sitting in front of the
workstation to the remote user if that user has a low-cost bit-mapped display and
mouse. In order to accomplish this, it is necessary to capture and encode the many
graphics operations involved so that they can be sent over a relatively low-speed
network connection with the same interactive facility as if one had the display
connected through the dedicated high-speed (30 Mhz) native vendor display/workstation
connection.

As reported last year, we studied the feasibility of remote access to workstations by
experimenting with a virtual graphics protocol, the Virtual Graphics Terminal Service
(VGTS), which was developed at Stanford in the Computer Science distributed systems
group [9, 81. The VGTS provides tools to define objects like windows, lines, rectangles,
circles, bitmaps, ellipses, splines, and graphics events like mouse clicks independently of
the graphics hardware and operating systems. This encoding minimizes the
communication bandwidth required between cooperating hosts, to remotely draw a line,
for example.

We also reported that an implementation of this protocol was developed and installed
in the operating system of a Xerox 1186 Lisp workstation so that its presence would be
transparent to the programmer. This means that if one connects to such a LISP
workstation from a SUN workstation (running suitable VGTS software), the Lisp
machine graphics will be sent over the net and reconstructed on the SUN workstation
without changes to the application program running. This implementation has worked

E. H. Shortliffe 34

5P41-RR00785-14 Details of Technical Progress

very well in early experiments so that over an Ethernet, the remote response time is
quite close to the response time on ‘the Lisp machine itself.

As a consequence of this work, we had demonstrated the feasibility of remotely using
LISP workstations over an Ethernet to take advantage of their graphics programming
environment.

During the past year, two new contenders for a virtual graphics standard protocol
appeared. These were the MIT Project Athena X window system [15], and Sun
Microsystems, Inc.‘s Network Extensible Window System [17], referred to as X and
NeWS, respectively. We spent several months studying both X and NeWS and met with
representatives of each group supporting these protocols.

X is a very complete protocol that has been developed over the past several years at
MITt. X operates at a somewhat lower level than VGP, and as a result can be more
bandwidth-intensive. It also assumes a static allocation of computation, display, and
interaction responsibilities between server and client. On the other hand, it more fully
implements the event mechanisms necessary to track mouse/window interactions and
mouse motion histories, and supports color. The protocol has been quite carefully
thought out, and provides more flexibility for implementing reasonable emulations of
the variety of window systems that exist within our environment. For example, TI
Explorers have mouse-sensitive regions within windows called “active regions,” and X
allows the support for such a region by defining an Input Only window with its own
cursor. When the mouse moves into such a window, the cursor changes to show the
user that he has entered an active region, and at the same time sends an enter-window
event to the client. The client can then take the appropriate action for that active
region (for instance, scroll text). This is impossible to do in VGP.

NeWS is unique in the sense that it uses a programming language to define its protocol.
This programming language is an extension of Adobe’s PostScript page layout language
for laser printers. This feature gives NeWS its extensibility, for if one wishes to add a
new function to the server, one simply sends the PostScript procedure implementing it
to the server, and remotely executes that new procedure. This gives the client a great
deal more control over what a window looks like; for example, one could implement
round or elliptical windows with NeWS. NeWS also allows a client to interact with
mouse motion histories and mouse/window events. Thus, it was very difficult to choose
between these two protocols.

Ultimately, we chose X as the remote graphics protocol standard for our work. This
decision was pragmatic, since we have limited staff resources, and X is receiving wide
support from both vendors and the Common Lisp community. An X client
implementation is being written for Texas Instruments Explorers here at SUMEX-AIM*.
Our TI Explorer X client is well underway. It is being written in Common Lisp and
uses flavors, the Explorer object system, to represent instances of X windows. We are
currently beta-testing Xerox Common Lisp, and will port the Explorer X client to our
Xerox Lisp Machines later this year.

Currently, TI in conjunction with MIT is developing a server implementation for
Explorers. DEC is a major supporter of X, and there are implementations under
development for their Vax line of equipment. Sun Microsystems is also doing an X

1 The X protocol has been completely redefined this past year. Its most recent version, X.11, is assumed in
all of the discussion that follows.

‘The client software runs on the Lisp machine and sends the graphics protocol commands to the remote
user display system. The dual of the client is the X server software which runs on the user display system
and translates the X protocol sent by a client Lisp machine Into real graphics pictures and mouse actions.

E. H. Shortliffe

Details of Technical Progress 5P41-RR00785-14

implementation beneath NeWS, as well as porting X to run directly on their equipment.
We are an alpha test site for the SUN implementation. This will provide us with
preproduction X server software that we can run on our SUN workstations to aid in
debugging our own client software. We anticipate implementations for workstations
like Macintosh II’s when a production version of X is released this Fall.

The X window protocol is more bandwidth intensive than some other protocols. It is
our feeling that even with this limitation, a suitable subset of the X protocol can be
used in cross-country connections where slower communications speeds and longer
delays are common. We will have to determine empirically what this subset is. One,
for example, would not want to track a mouse in such a situation, but could reasonably
expect to use mouse/window events, such as EnterWindow or LeaveWindow, to manage a
remote display over long connection distances. In any case, more work needs to be
done in this area to fully develop and integrate these capabilities into Lisp machine
systems and to insure that cross-country connections will indeed give usable response
time. Success of this work will mean that one can use LISP machine systems from
TELENET, ARPANET, or an Ether TIP connection throughout the SUMEX-AIM
community.

2.3 - Remote Graphics Applications

As an example of applying the remote graphics ideas, a TALK program has been
implemented which facilitates interactive, electronic communication between users on
independent workstations. Layered on the workstation’s native editor, the program
allows the full use of all editing capabilities in the process of communication, including
deletions, corrections and insertions, font changes, underlining, paragraph formatting,
etc. Since the workstation’s editor also supports both low- and high-level graphics, the
program not only facilitates textual exchanges among users, but also allows the sending
of screen images (back traces of program breaks, code fragments, etc.) as well as
structured graphics images (which can be modified on the destination workstation and
returned), all interactively. An example of a TALK session and an illustration of
TALK’s relationship to other subsystems in the workstation software environment are
shown in Figure 2.

The TALK program allows the use of different user interfaces, the workstation’s
document editor being just one possibility. We also implemented a simpler terminal
mode for compatibility with similar programs on other similar and dissimilar
workstations. The program was implemented initially using the Xerox XNS family of
Ethernet protocols for convenience and speed of development to try out the ideas.
Future extensions will include allowing use of different Ethernet (and possibly non-
Ethernet) protocols, since the program only requires a reliable byte-stream to operate.
We expect the IP/TCP protocols will be added next in order to be able to use the
program over the ARPA network.

The TALK program was released gradually to increasing numbers of users in order to
get real users’ feedback and make changes accordingly. The Medical Computer Science
group did an extensive test of the system, where for a period, they used it in place of
their normal electronic and non-electronic communication methods whenever possible.
This was both a test of the program and an exploration into what people want in the
next generation of electronic communication. The TALK program has been released to
the Xerox Lisp workstation community as a whole and researchers at Xerox PARC
successfully used the program to hold an interactive, graphic, electronic conversation
between users at the PARC facility (in California) and Xerox’s EuroPARC in England.

E. H. Shortliffe 36

5P41-RR0078514 Details of Technical Progress

Local Host

\ *I ..,I %, (-&&* , m j

Remote Host

GAP]

Ethernet

Figure 2: TALK Session Example and the Software Layers Involved in TALK

37 E. H. Shortliffe

Details of Technical Progress 5P41-RR00785-14

2.4 - Application-level Window System Standards

Modern programs need to utilize the multiple presentations, non-textual images, and
non-keyboard inputs available on all the systems in use by SUMEX. However, up until
now, each machine’s window system has been idiosyncratic to that machine. There is
considerable research now aimed at providing a powerful, flexible window system that
can be implemented on a wide variety of hardware, and utilized by many forms of
software. However, most of this research is directed at the primitive operations needed
to do basic graphics, windowing, and interaction (as in the discussion of X protocols
above). We are also working to develop a high level interface to a standard windowing
system targeted at the writer of AI applications programs. This system is not being
designed to specify the entire man/machine interface, but to provide a simple, easy to
understand and useful way for program authors to provide sophisticated interfaces
without spending a large percentage of their time working only on the interface. We
are currently in the midst of analyzing current applications in order to develop a model
for this system based on real-world experience.

3 - File Access and Management

A stable, efficient mechanism for storing and organizing data is central to any
computing environment, and is one of the most challenging issues in the move to
distributed, workstation-based computing. It is necessary to provide standard services,
such as file backup, archival, a flexible, intuitive naming facility, and data interchange
services (e.g., software distribution). We also feel that, as the amount of data being
manipulated grows, it will become more and more important to have powerfpl tools for
managing hierarchies of files. We plan to support the community with a number of
UNIX-based file servers, like the VAX-based servers in use at SUMEX for’several years
(see Figure 7) and the new SUN-based server (see Figure 5). These will require
continued SUMEX-AIM development, however. By keeping the number of servers
small, the distributed namespace problem should be manageable in the near term.
Current UNIX file servers are relatively cheap and fast. UNIX has many of the needed
facilities, e.g., backup, long names, hierarchical directory structure, some file property
attributes, data conversion, and limited archival tools. However, while general issues of
networking, remote memory paging services, and flexible file access have received
considerable attention in both the academic and commercial development of file
servers, there seems to be little attention given to other critical operational needs. For
instance, the much-used file archiving system of the DEC 2060 (sometimes called off-
line cataloged storage) has no analog service in the UNIX systems. Perhaps this is the
result of UNIX having its origin in the small computer world where the number of
users and volume of data has traditionally been quite low. Our efforts are going into
improving the archival facilities and providing case independence and multiple
generations by adding SUMEX software between the file system and the network. This
should temporarily solve these problems without substantial loss of performance or
maintainability.

For the long-term use of the distributed community, we plan to develop an optical
disk-based backup and archival system and to use enhanced tools on workstations to do
file management. We are currently investigating hardware options for optical disk
systems. As better techniques for managing a distributed file system come out of the
early research stages, we will use them to improve the distributed file service facilities.

3.1 - Remote File Access

During the past year, there has been a welcomed progress in vendors’ attempts to
standardize file access protocols. Previously, each vendor had addressed the file storage
needs of their particular workstation in a way that was incompatible with most other

E. H. Shortliffe

5P41-RR00785-14 Details of Technical Progress

workstations, making shared file access and support difficult in a highly heterogeneous
environment such as the SUMEX-AIM community. Also, the resources required to
maintain many distinct families of filing conventions and protocols on specialized
hardware, all meeting the performance needs of a demanding research community, are
prohibitive. Thus, last year we proposed to adopt a variant of the NFILE file access
protocol1 developed by Symbolics, Inc. It now appears, however, that Sun Microsystems,
Inc.‘s (SMI) Network File System (NFS) is becoming a more prevalent industry
standard, despite the fact that it does not support extensible file attributes and file
generations. In order to encourage the porting of NFS to other vendors’ workstations,
SMI has placed NFS in the public domain, and has a special group dedicated to aiding
interested parties in writing the requisite software. This group is also willing to make
some changes to the protocol to support non-UNIX file systems (for example, they
recently made a change so that NFS could be ported to a CRAY computer). We are
now beta-testing a Texas Instruments implementation of NFS on our Explorers, and are
ourselves engaged in implementing NFS on Xerox Lisp workstations.

Given that we have acquired an experimental SUN file server this year, and that NFS is
supported in the Kernel of the 4.3 release of Berkeley UNIX, this path for unified file
access across our mix of workstations appears to be the best solution available. Our
anticipated move to 4.3 UNIX on our VAX file servers this summer, and the
completion of the NFS port to the Xerox Lisp machines will give us a single file access
protocol that is supported by all of our systems with the exception of the Symbolics
3600’s. It appears that a third party is working on an NFS implementation for
Symbolics machines and we will test this in the coming year.

3.2 - File Server Throughput

At present, a number of file service strategies are employed among and within the
various workstation and time-sharing communities. Each strategy has its merits and
drawbacks and only in their aggregate do they address all the needs of the users.

One yardstick of utility is the maximum speed of data transfer. Speed of data transfer
is affected by the speeds of the processors, disks, I/O circuitry, file system design,
network transport protocols, file service protocols, software efficiency, system loading,
and other operational parameters. Simple throughput measurements suggest that for the
immediate future, the mixed-vendor file service strategy still has advantages from the
point of view of data transfer speed. (See Figure 3.)

For the Xerox workstations, the Xerox 8037 file server (using the NS Filing protocol)
provided the greatest measured throughput (roughly 37% faster than the Sun 3/180 and
Vax 111750 file servers, using TCP FTP). For the TI workstations, the fastest server
was another TI Explorer (using the Chaos FILE protocol) providing throughput 91%
greater than the nearest contender (a vax using the Chaos FILE protocol), and 269%
faster than the closest IP/TCP contender. The Sun workstation provides a virtual file
system interface only for the Sun NFS protocol, and hence was not benchmarked
against alternative servers because we are still working on optimized NFS facilities for
other workstations and servers.

None of the client/server configurations tested approached the theoretical maximum
throughputs projected by disk speeds, network speeds, and other system design
considerations. Therefore, we believe that through more effective software engineering
it will be possible to simultaneously improve data transfer speed and to reduce the
number of server implementations necessary to support the present level of service.
For example, the potential for software improvement was illustrated this year by fine-

1 A file access protocol is intermediate betwken a remote file syslem and a file transfer prolocol.

39 E. H. Shortliffe

Details of Technical Progress 5P41-RR00785-14

tuning of the Xerox implementation of TCP, which yielded improved Sun file server
throughput by a factor of 30. In the immediate future, our experiments in this area
will focus on the new implementations of the NFS file service protocol.

Client

DEC 2060
Sun 31180
Sun 3175

Server

Sun 31180
DEC 2060
Sun 3/180

Protocol Reading Throughput

TCP FTP 7,000 baud (loaded)
TCP FTP 17,000 baud (loaded)
TCP FTP 55,000 baud (unloaded)

Xerox 1186
Xerox 1186
Xerox 1186
Xerox 1186
Xerox 1186
Xerox 1186
Xerox 1186
Xerox 1186
Xerox 1186
Xerox 1186
Xerox 1186

Xerox 1132
Xerox 1132,
Xerox 1132
Xerox 1132
Xerox 1132
Xerox 1132
Xerox 1132
Xerox 1132

DEC 2060 PUP Leaf
DEC 780 (VMS) TCP FIP
Xerox IFS PUP Leaf
DEC 750 (UNIX) PUP Leaf
DEC 2060 PUP FTP
Sun 31180 TCP FTP
DEC 2060 TCP FTP
DEC 750 (UNIX) TCP FTP
Xerox IFS PUP FTP
Xerox 8037 NS Filing
Xerox 8033 NS Filing

DEC 2060 TCP FTP
DEC 2060 PUP Leaf
DEC 750 (UNIX) PUP FTP
DEC 750 (UNIX) PUP Leaf
DEC 750 (UNIX) TCP FTP
DEC 2060 PUP FTP
Sun 31180 TCP FTP
Xerox 8037 NS Filing

18,181 baud (loaded)
33,402 baud (loaded)
52,526 baud (unloaded)
53,036 baud (loaded)
67,001 baud (loaded)
71,192 baud (unloaded) (was 2,412 baud)
72,207 baud (loaded) (was 2,850 baud)
72,412 baud (loaded) (was 9,096 baud)
84,125 baud (unloaded)

103,519 baud (loaded)
105,486 baud (unloaded)

3,228 haud (loaded)
18,737 baud (loaded)
75,361 baud (loaded)
81,711 baud (loaded)

121,163 baud (loaded)
167,687 baud (loaded)
215,000 baud (loaded)
234,154 baud (loaded)

Reading Throughput Writing Throughput

TI Explorer DEC 750 (UNIX) TCP FI-P 36,952 baud
TI Explorer Sun 3080 TCP FfP 58,888 baud
TI Explorer TI Explorer TCP FTP 61,376 baud
TI Explorer DEC 2060 TCP FTP 63,320 baud
TI Explorer DEC 750 (UNIX) Chaos FILE 122,136 baud
TI Explorer TI Explorer Chaos FILE 233,008 baud

Figure 3: File Server Throughput Benchmarks

96,000 baud
135,208 baud
121,512 baud
110,592 baud
129,376 baud
221,192 baud

E. H. Shortliffe 40

5P41-RR00785-14 Details of Technical Progress

4 - Electronic Mail
Electronic mail has become a primary means of communication for the widely spread
SUMEX-AIM community. The advent of distributed workstations is forcing a
significant rethinking of the mechanisms employed to manage such mail. With
mainframes, each user tends to receive and process mail at the computer he uses most
of the time, his primary host. The first inclination of many users when an
independent workstation is piaced in front of them is to begin receiving mail at the
workstation, and, in fact, many vendors have implemented facilities to do this.
However, this approach has several disrd\l:ntzges:

. Workstations (especis!ly Lisp workstations) have a software design that gives
full control of all aspects of the system to the user at the console. As a
result, background tasks, like receiving mail, could well be kepl from
running for long periods of time either because the user is asking to use all
of the machine’s resources, or because, in the course of working, the user has
(perhaps accidentally) manipulated the environment in such a way as to
prevent mail reception. This could lead to repeated failed delivery attempts
by outside agents.

. The hardware failure of a single workstation could keep its user “off the
air” for a considerable time, since repair of individual workstation units
might be delayed. Given the growing number of workstations spread
throughout office environments, quick repair would not be assured, whereas
a centralized mainframe is generally repaired very soon after failure.

. It is more difficult to keep track of mailing addresses when each person is
associated with a distinct machine. Consider the difficulty in keeping track
of a large number of postal addresses or phone numbers, particularly if
there was no single address or phone number for an organization though
which you could reach any person in that organization. Traditionally,
electronic mail on the ARPANET involved remembering a name and one of
several “hosts” (machines) whose name reflected the organization in which
the individual worked. This was suitable at a time when most organizations
had only one central “host.” It is less satisfactory today unless the concept
of a “host” is changed to refer to an organizational entity and not a
particular machine.

. It is very difficult to keep a multitude of heterogeneous workstations
working properly with complex mailing protocols, making it difficult to
move forward as progress is made in electronic communication and as new
standards emerge. Each system has to worry about receiving incoming mail,
rou[ing and delivering outgoing mail, formatting, storing, and providing for
the stability of mailboxes over a variety of possible filing and mailing
protocols.

Thus, we are investigating the alternative strategy of having a mail server machine
which handles mail transactions. Because this machine would be isolated from direct
user manipulation, it could achieve high software reliability easily, and, as a shared
resource, it could achieve high hardware reliability, perhaps through redundancy. The
mail server could be used from arbitrary locations, allowing users to read mail across
campus, town, or country using more and more commonly available workstations.
The mail server acts as an interface among users, data stornge, and other mailers.
Users employ a mail access protocol (MAP) to retrieve messages, access and change
properties of messages, manage mailboxes, and send mail. This protocol should be
simple enough to implement on relatively uncomplicated, inexpensive machines so that

41 E. H. Shortliffe

Details of Technical Progress 5P41-RR00785-14

mail can be easily read remotely, This is distinct from some previous approaches since
the mail access protocol is used for all message manipulations, isolating the user from
all knowledge of how the data storage is used. This means the the mail server can
utilize the data storage in whatever way is most efficient to organize the mail. The
data storage could be anything from conventional magnetic disk file system to a highly
specialized mail filing system built on optical disks, since it is abstracted from other
elements in the mail system. The other mailers constitute the mail server’s (and thus
the users’) link to the outside world. The mail server would use various maif transport
protocols (e.g., SMTP) to exchange mail with other mail hosts.

We have been investigating user/mail interface issues for workstations, as well as issues
for the mail access protocol itself. We are examining several related projects, including
MIT’s PCMAIL (Mark Lambert, MIT Distributed Systems Group), the public parts of
Xerox’s Grapevine and NSMail, and work on Stanford’s V system.

We have implemented an Interim Mail Access Protocol (IMAP) server on the 2060 and
a client implementation in Interlisp on Xerox D-machines. The resulting beta-test mail
environment proved to be quite usable; some D-machine users use it as an alternative
to the 2060 mail environment in their daily mail work.

The IMAP server manipulates the actual file store copy of the user’s incoming
electronic mail under direction from the IMAP client. As noted above, the client has
no knowledge of the (possibly operating system- dependent) format of mail on the
server’s file store; the IMAP protocol provides its own representation of mail and the
server translates between this and its host system file store conventions.

The IMAP client issues a series of fetch commands to retrieve data from the server. A
fetch command has two arguments: a message sequence and the name of the data item
to be fetched. A message sequence can be a single message number, a range of message
numbers, or a list of numbers or ranges. For example, a typical fetch command might
be “fetch 2:7,10 flags”, meaning “fetch the status flags for messages 2 through 7 and
message 10” (status flags include “new message”, “deleted message”, “message has been
read”, etc. as well as user-defined flags).

In IMAP, the actual message data is identified by names such as “RFC822.Header” and
“RFC822.Body” referring to the text-based mail representation used on the DOD
Internet standard (RFC 822). This is intended to be a temporary solution only, since
RFC 822 lacks structure and the capability to deal with non-text mail. We plan on
extensions to IMAP (IMAP II, see below) that will introduce a canonical and structured
representation of an electronic mail message. In such a structured form, an electronic
mail message would consist of a set of named properties and property values.

During implementation of the user interface we observed that the IMAP protocol had
several deficiencies which made certain mail concepts difficult or impossible to
implement. For example, there is no way in IMAP to notify the client of newly
arrived mail during an IMAP session. Other IMAP deficiencies were observed in the
design of a Common Lisp implementation for Texas Instruments Explorers; in
particular, IMAP is a “lock-step” protocol with no mechanism for multiplexed
operation. This means that IMAP is vulnerable to synchronization problems in which a
client interprets part of a previous response as the answer to the current query.

To address these concerns, a new Interim Mail Access Protocol (IMAP II) was designed
after extensive review. IMAP II is heavily influenced by IMAP, although with a greater
degree of formality in the specification and quite a bit more extensibility. Instead of
the lock-step query/response model of IMAP, IMAP‘II uses tagged commands and data
and explicitly allows unsolicited data to be sent from the server to the client. IMAP II
introduces a more formal structure to server-to-client path; all data is now identified
unambiguously. This is especially important for extensibility and unsolicited data.

E. H. Shortliffe 42

5P41-RR00785-14 Details of Technical Progress

In addition, IMAP II makes it possible to fetch more than one item of data at a time.
This is an important performance issue since often the client needs to fetch a set of
data items for a set of messages. The IMAP model of fetching a single data item at a
time resulted in the client having to make several consecutive requests with much longer
turnaround than a single request that specifies everything the client wants.

A large subset of IMAP II has been implemented on the 2060 by modifying the existing
IMAP implementation. Both the 2060 implementation and the specification have been
left open-ended to allow for extensions as the need arises. Work is now in progress to
modify the Interlisp user interface to use IMAP II. Since the interface is no longer
limited to the model of IMAP a general restructuring of the Interlisp client is being
done to take advantage of the new facilities offered by IMAP II. A Common Lisp
implementation, based on IMAP II, is also in progress.

5 - Text Editing
All workstation systems have text editing facilities, some adaptations of systems in use
on mainframes (e.g., EMACS-like editors) and some specialized What-You-See-Is-
What-You-Get (WYSIWYG) editors (e.g., TEdit for Xerox workstations or InterLeaf
for UNIX workstations). We are currently making use of each workstation’s facilities,
making extensions where needed to bring compatibility among the various workstations
(in both user interface and document format) without detracting from the powerful, but
idiosyncratic, features. Text formatting, to produce printable or displayable forms of
documents, is another area where considerable vendor effort is expended.
Implementations of SCRIBE or TEX systems are available for some workstations
directly. Also, since these formatting processes are essentially batch operations, we
expect to provide servers that offer formatting services. These can be fed a raw
manuscript and will return a formatted version, suitable for one of the several printing
device standards in use. WYSIWYG editors are able to combine the editing and
formatting processes into the document preparation system. We will concentrate on
PostScript and Impress printers, allowing Press printers to fade from use. The 2060
also provides for printer spooling, based on a first-come-first-serve algorithm with
priorities determined by submission time and estimated pages of output. This spooling
is not available among workstations currently. Given adequate printing resources, a
laissez-faire access policy without spooling can work adequately. If there is a problem,
an arbitration scheme will need to be worked out, but this should be a relatively
straightforward task. Finally, we will need to augment vendor products to provide
essential text processing aids for functions like spelling correction, document merging
and segmenting, and document analysis.

5.1 - Text Processing for Xerox D-machines

TEdit is the text editing and formatting package on the Xerox D-machines (i.e., the
llxx series) and we have continued our work to extend this environment to displace
text processing from the DEC 2060. Almost all efforts during the past year were
directed towards the Interlisp package TMAX. TMAX stands for Tedit Macros And
extensions and it gives TEdit the ability to do things that hitherto could only be done
with Scribe. Scribe is a powerful document preparation language, but it consumes far
too many mainframe cycles. Furthermore, with Scribe you must hardcopy your output
to see what it looks like. TEdit is a WYSIWYG text editing and formatting system,
which means that you can see what your output will look like while you are creating it.

TMAX makes no attempt to mimic Scribe in TEdit. This would be a Herculean task
given the power and flexibility of Scribe. Instead TMAX implements some of the more
commonly used features of Scribe, including indexing, numbering, end notes, and
forward/backward referencing. All of these features are implemented through menus.

43 E. H. Shortliffe

Details of Technical Progress 5P41-RR00785-14

For example, to include an index request in a document, the user simply buttons the
Index command (with the mouse) and then types the text to be indexed. TMAX takes
care of all the rest (e.g., associating the page number with the indexed text, creating a
sorted list of the indices, etc.). These TMAX features plus the editing and formatting
features already available in TEdit make the TMAX/TEdit package an attractive
alternative to Scribe.

The following is’a quick overview of the major TMAX features:

. Indexing -- users can insert both simple and extended index requests, create
a sorted file of the indices and their page numbers, and even specify that
the page numbers be printed in manual format (e.g. 111:25.7 for chapter 3,
section 25, page 7). A simple index is just the text to index. An extended
index takes the text to sort on, the text to print, the font to print it in, and
a page number option. This option allows the user to specify the normal
page number in the index file, no page number, or a user specified fixed
page number. There is also a command that pops up a menu of the simple
and extended indices specified so far and users can insert additional index
requests by simply buttoning the corresponding item in this menu.

. Numbering -- users specify the names and order of “number markers” and
then insert these markers wherever they want something numbered. Users
can create as many different number markers as they like and some can be
layered’ (i.e. chapter, section, etc.) while others are disjoint. When a marker
is inserted or deleted, TMAX automatically adjusts all the related numbers.
Users can even specify the font and format of each number. The format
defines how the number will be displayed (i.e. an Arabic or Roman numeral
or a letter), the delimiter following the number, and the starting value.
There is also a facility to create a standard table-of-contents file.

. End Notes -- these are just like footnotes except end notes are inserted at
the end of the text rather than the bottom of the page. A future version of
TMAX will support footnotes. When an end note is inserted or deleted,
TMAX automatically adjusts the other end note numbers.

. References -- users can refer to specific numbering markers or end note
numbers by their numeric value. It does not matter if the number is before
or after the reference to it. Also, should a number change because a
number marker or end note was deleted or inserted, the reference to that
number will be automatically updated (as well as the number itself).

There are many more features and options in TMAX and still more in the planning
stages. For example, one can edit the text of an end note by pointing the mouse to the
end note number and pressing the middle button. Another TEdit window will appear
containing the end note text. Some of the features planned are footnotes,
bibliographies, and appendices. The TMAX User’s Guide describes all the features of
this package.

5.2 - Remote Editing

Currently, the mainframe editor of choice among our users is EMACS. EMACS, like
Scribe, is very powerful but it also places a heavy load on our mainframe. In an effort
to reduce the mainframe load (and ease users into using TEdit), we have written
WEDIT (Workstation EDITor). WEDIT provides a convenient way for mainframe
EMACS users to edit their files on a Xerox D-machine using TEdit. Note that WEDIT
itself is not an editor. it simply opens a connection to the workstation and sends a

E. H. Shortliffe

5P41-RR00785-14 Details of Technical Progress

packet containing the name of the file to edit. The workstation does all the rest.
When the user is done editing, the workstation sends the updated file back to the
mainframe. From the mainframe’s point of view WEDIT is an editor in the sense that
given a file, it returns an updated version. Because of this, it is easy to install as the
default mainframe editor. A simple change in the user’s login command file is all that
is necessary. From that point on, each time the user edits a file, the editing will be
done by TEdit on the user’s personal workstation. EMACS users can experience long
delays when the 2060 is heavily loaded. With WEDIT (i.e. TEdit) there are no delays
since the editing is done on the user’s personal workstation.

5.3 - Special Document Types

In last year’s report, some TEdit extensions to facilitate simple document types like
memos were mentioned. These extensions proved to be very useful although this
package was only a prototype. Using the concepts developed in this package, we have
written a new TEdit package called Letterhead. The Letterhead package allows users to
create standard letterheads, for example, for Stanford University correspondence. All
the options in this Letterhead package are menu driven. When a user starts the
Letterhead package, a TEdit window appears on his workstation and the user is
prompted for several different fields. First a menu of the possible Stanford logos pops
up and the user must select one of these logos. The logo is placed in the upper left
hand corner of the window. Next a menu of the return addresses pops up. The user
may select one of the known addresses or create his own. Next the Letterhead package
asks the user how the address should be justified. This is done though a menu and the
possible ways are left, right, or centered. The justified address is then inserted in the
upper right hand corner of the window. Finally, the current date is automatically
inserted just below the logo. Now the letterhead is complete and TEdit is ready to
accept input from the user. The user can change either the logo, address, or date by
pointing the mouse at the appropriate field and pressing the middle button. If the logo
is buttoned, the logo menu will pop up and the user can select a different logo. If the
address is buttoned, the return address menu will pop up and the user can either select
a known address, create his own address, or edit the address already in the document.
If the date is buttoned, a date menu pops up allowing the user to display the date in
one of several different formats. When this window is hardcopied, it will look just like
a standard Stanford University letter

6 - System Building Tools
Traditionally, a large set of languages and programming environments have been
supported on the 2060 in order to encourage experimentation and development. We
now believe that the experience gained in those years of broad experimentation can be
distilled into a fairly small set of languages and tools, relieving the researcher of the
need to learn many programming languages, while still providing the needed facilities to
allow the experimentation to move further into the higher levels of knowledge
representation systems and problem solving architectures. As we move to the
workstation based environment, we plan to phase out support for many of the languages
we have offered in the past and concentrate on the most relevant languages for AI
research and applications: C, FORTRAN, InterLisp-D, ZetaLisp, and Common Lisp.
Common Lisp has already achieved popularity as a standard (see page 54), and many
projects are already using it. We expect to press for further adoption of Common Lisp
as a community symbolic computing standard, consistent with prior investments in large
software systems such as those which exist for on-going AIM projects. In addition, we
will support important higher-level knowledge representation and problem solving
architectures (e.g., S.1, KEE, Strobe, and others) as appropriate for community research
and dissemination activities.

45 E. H. Shortliffe

Details of Technical Progress 5P41-RR00785-14

7 - Distributed Information Resources and Access
There are many user needs for getting information from and about the computing
environment, ranging from help with command syntax to sophisticated database queries.
A distributed computing environment adds new complexities in making such
information accessible and also new requirements for information about the distributed
environment itself. We are adapting the many workstation-specific information tools
to include distributed environment information such as workstation and server
availability, “finger” information about user locations and system loads, network
connectivity, and other information of interest to users in designing approaches to
carrying our their research tasks. In addition, we will have to develop general systems
tools for monitoring and debugging distributed system performance to identify
workstation and network problems. Finally, we must adapt and develop distributed
system tools for remote database queries and organize the diverse sources of
information of interest to AIM community members to facilitate remote workstation
access to community, project, and personal information that has traditionally existed in
ad hoc files on mainframe systems.

In conjunction with the SUN file server we have been integrating, we have mounted an
experimental database system for remote information access using the commercial
UNIFY database product. Our goal is to make access to the database information
possible from a distributed workstation environment through network query
transactions, as opposed to asking the user to log into the database system as a separate
job and type in queries directly. This will facilitate remote information access from
within programs, including expert systems, where the information can be filtered,
integrated with other information, and presented to the user. The system will provide
multi-user, multi-database access capability; that is, several users will be able to have
access to a single database at the same time, and a single user will be able to have
access to several databases at the same time.

The initial implementation of the remote query system was done on a TI Explorer.
The query interface on the Explorer communicates with the Sun UNIFY database
system via the Remote Procedure Call (RPC) mechanism which underlays the NFS
remote file access system. The Explorer calls a server on the SUN and sends an
SQL/DML query command as an argument to a remote query procedure, and receives
the retrieved data and/or a message sent back from the server. SUN UNIFY can
already manage multiple databases, so a client can have several databases open at the
same time. The operations on the database are transaction-oriented, and therefore the
concept of a database access session is applicable. The access functions currently
implemented are open a database, close a database, retrieve data from a database,
insert records into a database, delete records from a database, update the database,
lock a database, and unlock a database.

This facility can be easily converted to run in Lisp environments on machines with
SUN RPC services implemented. Currently, there is no RPC package for the Xerox D-
machines, so we undertook implementing one. This should be done by early summer.

8 - Distributed system operation and management
The primary requirements in this area are user accounting (including authorization and
billing), data backup, resource allocations (including disk space, console time, printing
access, CPU time, etc.), and maintenance of community data bases about users and
projects. Our accounting needs are a function of NIH reporting and cost recovery
requirements. The distributed environment presents additional problems for tracking
resource usage and will require developing protocols for recording various kinds of
usage in central data base logs and programs for analyzing and extracting appropriate
reports and billing information. We are now involved in analyzing the kinds of

E. H. Shortliffe 46

5P41-RR00785-14 Details of Technical Progress

resource usage that can be reasonably. accounted for in a distributed environment (e.g.,
printing, file storage, network usage, console time, processor usage, server access), and
investigating what facilities vendors have provided for keeping such accounts. Data
backup is, of course, closely related to the filing issue. We continue to use and
improve network based file backup for many of our file servers.

9 - Mainframe and Workstation System Environments

The various parts of the SUMEX-AIM computing environment require development and
support of the operating systems that provide the interface between user software and
the raw computing capacity. This includes the mainframe systems and the workstation
systems. Following are some highlights of recent system software environment
developments.

9.1 - TOPS-20

Our long-term plan to phase out the 2060 mainframe system has continued as
scheduled. Development efforts on the 2060 have ceased, except where needed to keep
the machine operational in the evolving distributed environment. This involves
considerable work in areas such as file system archiving, retrieval, and backups; periodic
updating, checkout, and installation of new versions of system software; the regular
maintenance and updating of system host and network tables; and monitoring of and
recovery from system failures, both hardware and software. Over the past year, the
main areas of activity include:

. Network service reliability -- The SUMEX 2060 has experienced relatively
frequent software crashes resulting from system problems in the handling of
free space by the IP/TCP network software. During periods of heavy use,
the entire system would suffer an unscheduled restart approximately every
eighteen hours. After a considerable amount of investigation of crash
dumps, we isolated a cause. The problem was introduced over a year before
in a modification made by another site in an attempt to improve network
performance. After fixing this illusive bug, the 2060 reliability has
improved markedly and the system regularly runs for over a week between
reloads.

. Network naming domains -- The Internet community is in the process of
converting to a domain naming scheme, to replace the flat address space of
the old exhaustive host tables prepared by the Network Information Center.
Although we have converted to using only fully qualified names, we are not
yet running the domain system on the 2060. This is due in part to the
unreliability and incompleteness of the domain software for TOPS-20’s at
this point. We expect to move to full domain support this coming year.

. Dial-up communications -- A significant portion of work on the 2060 is
carried on via dialup modems from homes. During the past year we
rearranged and consolidated our incoming modem lines. We combined
several inside and outside phone number hunting sequences serving several
different modem types and speeds, into well defined groups for old-style
Vadic 1200 modems, local versions of split speed modems, and other types.
This last group serves any BellKCITT modem at any speed from 300 baud
to 2400 baud. During this process we removed all the outside phone lines,
and now operate exclusively through Stanford-operated SLlOO lines. In
addition to these mainframe modems, we have installed 10 modems on an
Ethernet TIP, allowing users, once dialed in, to connect to the host of their
choice.

4: E. H. Shortiiffe

Details of Technical Progress 5P41-RR00785-14

. Cost Center accounting -- During the past year, the 2060 accounting
programs were updated to reflect the new Cost Center structure (see Section
III.D.2). All the various users and projects were organized according to their
cost center account numbers, and monthly reports are generated to reflect
this usage. As part of this conversion, a concerted effort was made to
review all of the SUMEX accounts, and remove those that were otherwise no
longer appropriate.

9.2 - UNIX

We run UNIX on our shared VAX 11/750 file servers. This system has been used
pretty much as distributed by the University of California at Berkeley, except for local
network support modifications, such as for ChaosNet protocols. The local VAX user
community is small, so we have not expended much system effort beyond staying
current with operating system releases and with useful UNIX community developments.

9.3 - Xerox D-Machines

Much of the SUMEX-AIM community continues to use InterLisp, including many
Dandelion (1108). Dandetiger (1109), and DayBreak (1186) machines, in addition to the
Dorado (1132). We have used the Xerox implementation of. the TCP network protocol
(in cooperation with Xerox) extensively this past year and saw its performance and
reliability improve a great deal. We began a Lisp implementation of Sun NFS
(Network File System). The ARPA protocol suite, which is seeing increasing usage,
lacks a mechanism for random file access or attribute manipulation. The Sun
specification partially fills this void and appears to be a standard whose acceptance is
growing.

The Interlisp software remained stable this year and almost no user time was wasted on
software revision problems. A number of new utilities were written locally or acquired
from other sites with whom we exchange expertise on the ARPA Internet.

We are among the first users of Xerox Common Lisp for the Xerox Lisp machines.
The advantages to our community are early availability of this widely-recognized dialect
of the Lisp language and the ability to specially direct the implementers’ attention to
the problems of greatest concern to us.

The Info-1100 discussion list which we sponsor saw another year of growth of
readership and participation on the ARPA Internet, Usenet, Bitnet, and CSNet. Among
the beneficiaries are other NIH-sponsored projects at Ohio State University and the
University of Maryland.

In conjunction with the Info-1100 mailing list, a library of user-written software is
made available to the Internet community on the SUMEX-AIM 2060 computer. Over
60 packages and supplements were distributed this way. Additionally, the source code to
many of these packages was mailed to the Info-1100 mailing list in order to reach an
even wider group.

We have worked closely with many other sites, including the Center for Study of
Language and Information at Stanford, the Stanford Campus Networking group, Rutgers
University, Ohio State University, the University of Pittsburgh, Cornell, Maryland, and
industrial research groups such as Xerox Palo Alto Research Center, SRI, Teknowledge,
IntelliCorp, and Schlumberger-Doll Research. We have been the maintainers for the
international electronic mail network of users for research D-machines, which have
upwards of 300 readers, and the interchange of ideas and problems among this group
has been of great service to all users.

E. H. Shortliffe 48

5P41-RR00785-14 Details of Technical Progress

Although numerous Xerox Lisp machine sites are able to obtain software from
SUMEX-AIM via anonymous FTP over the ARPA network, it became increasingly clear
that a large part of the community did not have such access even though there is
electronic mail connectivity. To experiment with distributing software to these sites, we
put together a simple ASCII encoder for binary files, BMENCODE. This program
makes it possible to mail binary files (TEdit editor files and *COM files from the
compiler) to isolated sites, exploiting Interlisp’s inherent ability to encode bitmaps into
ASCII files. Numerous files were successfully transferred around using this program.
As the user community has begun to see the value of such a utility, more efficient
versions of the program have been developed elsewhere.

In extending our XNS boot service (which provides installation and diagnostic programs
for our workstations) to work with the new 1186 Hardware, we ran into trouble as the
1186’s hastily written initial Ethernet microcode. The booting sequence violated
Ethernet layering principles which prevented it from routing beyond the local network.
After nearly a year of exchanging letters, packet traces and software with Xerox, the
problem is still unresolved. This led to our adding a second Xerox 8000-based XNS
boot server (using a spare 1108 processor) to our other major network with 1186
hardware. This additional server provided a suitable work-around to the problem and
only a single workstation is still unable to access network boot services.

Our move to a new building this past year involved the de-installation and
reinstallation of nearly thirty workstations plus several printers and other servers. In
anticipation of the move, diagnostics were run on all of the Xerox University Grant
1108s in order to get any existing problems fixed under warranty. The diagnostics were
run again after the machines were installed in the new facility. All the equipment was
successfully relocated without major incident.

9.4 - Texas Instruments Explorers

The twenty Texas Instruments Explorers have enjoyed an increasing popularity as more
projects have developed a need for the combination of execution speed, full Common
Lisp, and sophisticated development facilities offered by the Explorer. Explorers have
come into use in other parts of the national biomedical community as well, such as
Ohio State University and the University of Maryland. However, the Explorer is still
maturing as an AI workstation. Thus, our efforts have been directed at improving the
environment of the Explorer by developing software, organizing user interest activities,
and advising Texas Instruments.

Previous experience has shown that the greatest source of advancement for a particular
computing environment is the user community. They are the most in touch with the
deficiencies of the system, and thus uniquely positioned to address them, as well as to
utilize the strengths of the system. The product developers of the system are frequently
too involved in the lower levels of detail to produce general, effective solutions to
problems, as well as being hampered by limited manpower resources. However, a
significant amount of time and effort is required to organize this effort. This task has
traditionally fallen to a user-run organization, such as DECUS or Usenix.

We are spearheading the effort to organize a national or international users’ group for
the Explorer. The goals of this undertaking are to:

. facilitate dissemination of information by organizing meetings where
presentations and discussions can be used to make little-known techniques
and facilities more widely known, as well as feeding back information on
needs and wants to developers,

. allow more immediate communication via electronic mailing lists, which are

49 E. H. Shortliffe

Details of Technical Progress 5P41-RR00785-14

used for distribution of important software fixes and discussion of items of
general interest, such as new software tools, or proposed changes to the
system,

. publish a periodic newsletter containing usage tips, salient extracts from the
electronic mailing lists, and announcements,

. and, perhaps most importantly, establish and maintain a library of public
domain, user supplied software.

A preliminary meeting was held at AAAI ‘86, and a second meeting is being planned
for AAAI ‘87. Over 80% of those who have expressed interest in th? users’ group are
members of the Info-TI-Explorer and Bug-TI-Explorer mailing lists, currently
maintained on the SUMEX-AIM 2060. Negotiations with Texas Instruments over the
legal ramifications of the user library are in the final stages. The format and
procedures of the library have been mapped out, and are currently undergoing peer
review. Online copies of the library will be maintained at Texas Instruments, and on
the SUMEX-AIM 2060, to facilitate ARPANET access to the software.

There are already many entries ready for the library, most of which have been
developed locally. We have maintained the software tools that were produced previously
by fixing bugs, making improvements, and porting to new releases. Some of these have
remained essentially the same, including:

. The Symbolics 36xx to Explorer compatibility package

. The Source Code Controller (was known as the System Manager)

. Imagen Via TCP (was Net Imagen)

. Finger Via TCP (was TCP Finger)

. Vertically Ordered Menu Columns

. General Named Structure Message Handler

. DEFSTRUCT Type Checking

. Batch Processor

. Choice Facility Enhancements (was Choose Variable Values Macros)

. Backup To File System (was FS To FS Backup)

Many of the tools have been enhanced or newly written this year, including:

. A number of pieces that allow the user to exploit a “desk top” usage
metaphor, where several applications can be active, or semi-active at once,
with the interaction area, or “window” of each application potentially
overlapping others. These pieces include:

0 WINDOW-MANAGER-SYSTEM-MENU provides a replacement to
the standard system menu that allows for easy manipulation of the
placement and shape of windows on the screen, as well as other
common display management operations.

o RUBBER-BAND-RECTANGLES which allows easy, precise
specification of a rectangle on the screen by providing a constantly

E. H. Shortliffe 50

